Surrogate modeling approximation using a mixture of experts based on EM joint estimation
نویسندگان
چکیده
منابع مشابه
Estimation of Mixture Models Using Co-EM
We study estimation of mixture models for problems in which multiple views of the instances are available. Examples of this setting include clustering web pages or research papers that have intrinsic (text) and extrinsic (references) attributes. Our optimization criterion quantifies the likelihood and the consensus among models in the individual views; maximizing this consensus minimizes a boun...
متن کاملA New Algorithm of Posture Modeling and Recognition Based on Gaussian Mixture Model and EM Estimation
In this paper, we proposed a new posture modeling method based on Gaussian Mixture Model (GMM). First, spatial-temporal interest points (STIPs) were extracted according to the properties of human movement, and then, histogram of gradient (HOG) was built to describe the distribution of STIPs in each frame. In addition, the training samples were clustered by non-supervised classification method. ...
متن کاملEstimation of the Parameters of the Lomax Distribution using the EM Algorithm and Lindley Approximation
Estimation of statistical distribution parameter is one of the important subject of statistical inference. Due to the applications of Lomax distribution in business, economy, statistical science, queue theory, internet traffic modeling and so on, in this paper, the parameters of Lomax distribution under type II censored samples using maximum likelihood and Bayesian methods are estimated. Wherea...
متن کاملFinite mixture modeling with mixture outcomes using the EM algorithm.
This paper discusses the analysis of an extended finite mixture model where the latent classes corresponding to the mixture components for one set of observed variables influence a second set of observed variables. The research is motivated by a repeated measurement study using a random coefficient model to assess the influence of latent growth trajectory class membership on the probability of ...
متن کاملUnsupervised Posture Modeling and Recognition based on Gaussian Mixture Model and EM Estimation
In this paper, we proposed an unsupervised posture modeling method based on Gaussian Mixture Model (GMM). Specifically, each learning posture is described based on its movement features by a set of spatial-temporal interest points (STIPs), salient postures are then clustered from these training samples by an unsupervised algorithm, here we give the comparison of four candidate classification me...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Structural and Multidisciplinary Optimization
سال: 2010
ISSN: 1615-147X,1615-1488
DOI: 10.1007/s00158-010-0554-2